Spin-orbit coupling and chaotic rotation for eccentric coorbital bodies
نویسندگان
چکیده
منابع مشابه
Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits
Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the r...
متن کاملAxial rotation, orbital revolution and solar spin–orbit coupling
The orbital motion of the Sun has been linked with solar variability, but the underlying physics remains unknown. A coupling of the solar axial rotation and the barycentric orbital revolution might account for the relationships found. Some recent published studies addressing the physics of this problem have made use of equations from rotational physics in order to model particle motions. Howeve...
متن کاملKerr rotation in Cu, Ag, and Au driven by spin accumulation and spin-orbit coupling
We measure transient spin accumulation in Cu, Ag, and Au by time-resolved magneto-optical Kerr effect. The transient spin current is generated by ultrafast demagnetization of a ferromagnetic [Co/Pt] layer, and spin accumulates in an adjacent normal metal, Cu, Ag, or Au by spin diffusion. The magnitude of the Kerr rotation is described by an off-diagonal conductivity tensor that is proportional ...
متن کاملSpin Current in Spin Orbit Coupling Systems
We present a simple and pedagogical derivation of the spin current as the linear response to an external electric field for both Rashba and Luttinger spin–orbital coupling Hamiltonians. Except for the adiabatic approximation, our derivation is exact to the linear order of the electric field for both models. The spin current is a direct result of the difference in occupation levels between diffe...
متن کاملIntrinsic spin torque without spin-orbit coupling.
We derive an intrinsic contribution to the non-adiabatic spin torque for non-uniform magnetic textures. It differs from previously considered contributions in several ways and can be the dominant contribution in some models. It does not depend on the change in occupation of the electron states due to the current flow but rather is due to the perturbation of the electronic states when an electri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the International Astronomical Union
سال: 2014
ISSN: 1743-9213,1743-9221
DOI: 10.1017/s1743921314008230